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Abstract

A robust saturation controller for the linear time-invariant (LTI) system involving both a control input’s saturation and

structured real parameter uncertainties was proposed in [C.W. Lim, Y. J. Park, S.J. Moon, Robust saturation controller

for linear time-invariant system with structured real parameter uncertainties, Journal of Sound and Vibration 294 (1–2)

(2006) 1–14]. This controller can also be applicable to the multi-input case. In this paper, the robust saturation controller is

extended to the uncertain LTI system with multi-input and designed by introducing additional subsidiary setting

parameters for each control input. An example is presented to show its application to multi-input uncertain LTI systems.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The control of a dynamic system with bounded control input has been one of the basic problems in many
control engineering fields such as mechanical engineering, aerospace engineering, civil engineering, chemical
engineering, and so on. An extensive chronological bibliography on the progress of dealing with control
input’s saturation problem has been presented in Ref. [1] and some fundamental problems of control systems
with control input’s saturation have been examined in a systematic manner in Ref. [2]. Since the traditional
linear controllers are designed to be stable without control input’s saturation, the stability of the closed-loop
system is not guaranteed and the closed-loop system can become unstable when the control input is saturated
[3,4].

One can avoid control input’s saturation by imposing the constraint on it so that the required control input
may be smaller than the bounded control input. But the control performance may be seriously compromised
in some cases due to the use of low-gain. Another case to deal with the saturation problem is the bang–bang
controller which can fully utilize the bounded control input in the design. The stability of the closed-loop
system during control input’s saturation for the bang–bang controller is guaranteed. There have been several
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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types of bang–bang controllers for nominal linear time-invariant (LTI) systems like optimal bang–bang
controller, suboptimal bang–bang controller, modified bang–bang controller, and so on [5–10]. Among them,
the modified bang–bang controller is most physically applicable to real systems.

To guarantee the robust stability of the bang–bang type controllers, a single input robust saturation
controller for the LTI system involving both a control input’s saturation and structured real parameter
uncertainties was proposed in [11]. The robust saturation controller is an extension of the modified bang–bang
controller for nominal LTI systems into uncertain LTI systems. In this paper, a multi-input robust saturation
controller is proposed for the uncertain LTI systems with multi-input. A design scheme of the proposed
controller is presented and its application example is shown.

2. Multi-input robust saturation controller

Here, the following uncertain LTI system with multi-input (1) is considered and a robust saturation
controller for the multi-input case is designed based on the affine quadratic stability definition and multi-
convexity concept [12] which are analytical tools for the design of this controller:

_xðtÞ ¼ ðA0 þ DAðyÞÞxðtÞ þ BUðtÞ; xð0Þ ¼ x0, (1)

where x ¼ ½x1 x2 . . . xn�
T is an n� 1 state-vector, A0 is an n� n nominal system matrix, y ¼ ðy1; y2; . . . ; ykÞ 2 <

k

is a vector of uncertain real parameters, DA(y) is time-invariant uncertainties, A0+DA(y) is assumed to be
stable, B is an n� r control input matrix with the jth element Bj, and U(t) is an r� 1 vector consisting of r

control inputs. And uj(t) is the jth control input and is bounded by 7ujmax as Eq. (2).

jujðtÞjpuj max for j ¼ 1; 2; . . . ; r. (2)

We assume that lower and upper bounds are available for the parameter values. Specifically, each parameter
yi ranges between known external values yi and yi.

yi 2 ½yi; yi� for i ¼ 1; 2; . . . ; k. (3)

This means that the parameter vector y is valued in a hyper-rectangle called the parameter box. In the sequel

Y :¼ fðo1;o2; . . . ;okÞ : oi 2 fyi; yigg (4)

denotes the set of the 2k vertices or corners of this parameters.
The uncertain system matrix A(y) depends affinely on the uncertain parameters of yi and is described by the

system with structured real parameter uncertainties. That is

AðyÞ ¼ A0 þ DAðyÞ ¼ A0 þ y1A1 þ y2A2 þ � � � þ ykAk, (5)

where A0, A1, A2,yAk are known fixed matrices.
The following notion of parameter-dependent quadratic Lyapunov function is defined.

V ðxðtÞ; yÞ ¼ xTPðyÞx, (6)

where P(y) is an affine function of y and is composed of a positive-definite symmetric matrix P0 and k

symmetric matrices P1, P2,y,Pk.

PðyÞ ¼ P0 þ DPðyÞ ¼ P0 þ y1P1 þ y2P2 þ � � � þ ykPk. (7)

The time derivative of the Lyapunov function (6) is of the following form:

_V ðxðtÞ; yÞ ¼ xTðtÞ½AðyÞTPðyÞ þ PðyÞAðyÞ�xðtÞ þ 2xTðtÞPðyÞBUðtÞ. (8)

For _V ðxðtÞ; yÞo0 with control input’s constraint of Eq. (2), the following multi-input robust saturation
controller of saturation function type are proposed.

UðtÞ ¼ diagðu1ðtÞ; u2ðtÞ; . . . ; urðtÞÞ or ujðtÞ ¼ �sat½djB
T
j P0xðtÞ�, (9)

where dj40ðj ¼ 1; 2; . . . ; rÞ and P0 satisfies 2
k+1+k LMI conditions of Eqs. (10)–(12).

The following Theorem 1 gives sufficient conditions for the existence of the robust saturation controller (9).
LMIs of Eqs. (10)–(12) can be easily solved using commercial MATLABs and LMI control toolbox [13],
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which is very efficient and easy to use, by setting Ma in an arbitrary positive-definite symmetric matrix. Ma is a
controller design parameter and positive-definite symmetric matrices Majðj ¼ 1; 2; . . . ; rÞ, which satisfy
Eq. (13) and are not necessary in the single input case, are additional subsidiary setting parameters for each
control input. Setting each matrix of Maj determines the maximum magnitude of the jth control input.

Theorem 1. Consider an uncertain linear time-invariant system (1) where A(y) depends affinely on the
parameter vector y ¼ ðy1; y2; . . . ; ykÞ, yi satisfies Eq. (3), and control inputs have constraint of Eq. (2). Let Y
denotes the sets of vertices of the parameter box Eq. (4). Robust stability of the multi-input robust saturation
controller (9) is guaranteed if there exist k+1 symmetric matrices P0, P1, P2,y, Pk, and a positive-definite
symmetric matrix Ma satisfying Eqs. (10)–(12), if there exist positive-definite symmetric matrices Maj

(j ¼ 1; 2; . . . ; r) satisfying Eq. (13), and if there exist dj40 (j ¼ 1; 2; . . . ; r) which satisfy Eq. (14) for these
matrices P0, P1, P2,y, Pk and Maj.

PðoÞ40 for all o 2 Y, (10)

AðoÞTPðoÞ þ PðoÞAðoÞ þMao0 for all o 2 Y, (11)

AT
i Pi þ PiAiX0 for i ¼ 1; 2; . . . ; k, (12)

Xr

j¼1

Maj ¼Ma, (13)

Maj þ dj 2P0BjB
T
j P0 þ

Xk

i¼1

yiðP0BjB
T
j Pi þ PiBjB

T
j P0Þ

( )
40 for all o 2 Y and for j ¼ 1; 2; . . . ; r. (14)

Proof. We can express control inputs (9) as the following form by introducing bj(x(t)).

ujðtÞ ¼ �bjðxðtÞÞdjB
T
j P0xðtÞ,

bjðxðtÞÞ ¼
satðdjB

T
j P0xðtÞÞ

djB
T
j P0xðtÞ

,

bjðxðtÞÞ ¼ 1 if BT
j P0xðtÞ ¼ 0, ð15Þ

where 0objðxðtÞÞp1 for j ¼ 1; 2; . . . ; r.
Along the trajectories of system (1) with the control inputs given in Eq. (9), the time derivative of V(x, y) is

obtained as

_V ðx; yÞ ¼ xT½AðyÞTPðyÞ þ PðyÞAðyÞ�x

þ xT
Xr

j¼1

�bjdj 2P0BjB
T
j P0 þ

Xk

i¼1

yiðP0BjB
T
j Pi þ PiBjB

T
j P0Þ

 !" #
x. ð16Þ

Because it is not guaranteed that the second term in the right-hand term of Eq. (16) is less than 0 with dj40,
a positive-definite symmetric matrix Ma is introduced to make dj40. Eq. (17) is obtained from adding and
subtracting Ma each term in the right-hand term of Eq. (16).

_V ðx; yÞ ¼ xT½AðyÞTPðyÞ þ PðyÞAðyÞ þMa�x

þ xT �Ma �
Xr

j¼1

bjdj 2P0BjB
T
j P0 þ

Xk

i¼1

yiðP0BjB
T
j Pi þ PiBjB

T
j P0Þ

 !" #
x. ð17Þ

We assume that there exist symmetric matrices P0, P1, P2,y, Pk, and Ma satisfying that the first term in the
right-hand term of Eq. (17) is less than 0. Robust stability of the multi-input robust saturation controller (9) is



ARTICLE IN PRESS
C.-W. Lim / Journal of Sound and Vibration 300 (2007) 1079–10871082
guaranteed if the second term in the right-hand term of Eq. (17) is less than 0 with dj40 when we substitute
these matrices P0, P1, P2,y, Pk, and Ma into the second term in the right-hand term of Eq. (17). The first term
in the right-hand term of Eq. (17) is always less than 0 if there exist symmetric matrices P0, P1, P2,y, Pk, and a
positive-definite symmetric matrix Ma satisfying Eqs. (10)–(12). Let rji ¼ djyi (j ¼ 1; 2; . . . ; r and
i ¼ 1; 2; . . . ; k) and Ma ¼

Pr
j¼1Maj like Eq. (13), then dj yi prjipdjyi and the second term in the right-hand

term of Eq. (17) is rewritten as Eq. (18).

�xT
Xr

j¼1

Maj þ bj djð2P0BjB
T
j P0Þ þ

Xk

i¼1

rjiðP0BjB
T
j Pi þ PiBjB

T
j P0Þ

 !( )" #
x. (18)

Here, we first consider the case of bj ¼ 1 for j ¼ 1; 2; . . . ; r. For given dj40, all the following LMIs of Eq.
(19) are a convex constraint on the variables rji because Maj, P0BjB

T
j P0, and P0BjB

T
j Pi þ PiBjB

T
j P0 are

symmetric matrices, respectively.

Maj þ djð2P0BjB
T
j P0Þ þ

Xk

i¼1

rjiðP0BjB
T
j Pi þ PiBjB

T
j P0Þ40 for j ¼ 1; 2; . . . ; r. (19)

When we define Fj (j ¼ 1; 2; . . . ; r) as the set of the 2k vertices of rji of Eq. (20), Eq. (19) is satisfied for all rji

if and only if Eq. (19) is satisfied in Fj by convexity of Eq. (19).

Fj :¼ fðcj1;cj2; . . . ;cjkÞ : cji 2 fdj yi; djyigg for j ¼ 1; 2; . . . ; r. (20)

Eq. (19) is equivalent to Eq. (14). Next, we consider the case of 0objo1 for j ¼ 1; 2; . . . ; r. For given dj40,
we can easily show that Eq. (18) is less than 0 if Eq. (19) is satisfied. Therefore Eq. (18) is always less than 0 if
Eq. (14) is satisfied for given dj40.

Remark 1. A numerical method to overcome the difficulty of the multi-convexity constraint of Eq. (12) was
suggested in Refs. [11,12]. Ma and P0, P1, P2,y, Pk satisfying the LMIs of Eqs. (10)–(12) can be sought
simultaneously. But it is more practical and desirable to let Ma be a controller design parameter and set it in an
arbitrary value by controller designer. Then P0, P1, P2,y, Pk can be obtained by solving the LMIs of
Eqs. (10)–(12) given Ma. In the LMI control toolbox of MATLABs [13], the solution of P0, P1, P2,y, Pk

to simultaneous LMIs of Eqs. (10)–(12) is formulated as

Minimize t subject to LHðX ÞoRHðX Þ þ tI , (21)

where LH(X) and RH(X) are left-hand and right-hand sides of LMIs respectively. Both LH(X) and RH(X) are
function of the matrix variable X and I is an identity matrix with an appropriate dimensions. The condition for
the existence of a solution to LMIs is obtained from the global minimum of t, denoted by tmin. If tmino0,
there exists a solution of the LMIs, whereas tminX0 means that the solution does not exist.

Remark 2. A simple method to determine subsidiary setting parameters Maj in Eq. (13) is to choose
Maj ¼ ajMa(

Pr
j¼1aj ¼ 1) with ajo0. And all the maximum values of dj for the jth control input satisfying Eq.

(14) are finite (0odjpdj max). We can seek djmax by setting dj in a fixed value and sweeping through dj in Eq. (14).
The larger the bounds of parameter uncertainties are, the smaller the maximum values of dj are in general.

3. Numerical simulations

The proposed multi-input robust saturation controller (9) is applied to a 2DOF linear vibrating system with
two control input forces as shown in Fig. 1. The masses, stiffnesses, and damping coefficients for nominal
system are m1 ¼ m2 ¼ 1 kg, k1 ¼ k2 ¼ 1N=m, and c1 ¼ c2 ¼ 0:01Ns=m; respectively. The maximum control
input forces are u1 max ¼ 0:1N and u2 max ¼ 0:1N. Let uncertainties of stiffnesses be y1 and y2, then the
admissible trajectories are given by k1(1+y1) and k2(1+y2) specified in multiplicative form and this uncertain
system can be described by state space equation as in Eq. (1). In this case, state vector x ¼ ½ x1 x2 _x1 _x2 �

T,
control input matrix B ¼ ½B1 B2 � (B1 ¼ ½ 0 0 1=m1 0 �T and B2 ¼ ½ 0 0 0 1=m2 �T), and uncertain
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Fig. 1. 2DOF linear vibrating system with two control input forces.

Table 1

Obtained values of P0, P1 and P2

P0
2:5982eþ 1 �1:2982eþ 1 1:1143e� 1 �5:0910e� 2

�1:2982eþ 1 1:2998eþ 1 �5:3299e� 2 6:1955e� 2

1:1143e� 1 �5:3299e� 2 1:3003eþ 1 1:5260e� 2

�5:0910e� 2 6:1955e� 2 1:5260e� 2 1:3016eþ 1

2
6664

3
7775

P1
1:2992eþ 1 6:1831e� 3 �3:2421e� 2 �4:5517e� 3

6:1831e� 3 6:9763e� 3 4:6074e� 3 6:4153e� 4

�3:2421e� 2 4:6074e� 3 2:3088e� 4 �2:3677e� 4

�4:5517e� 3 6:4153e� 4 �2:3677e� 4 6:4012e� 3

2
6664

3
7775

P2
1:2984eþ 1 �1:2987eþ 1 �3:1495e� 2 4:1427e� 2

�1:2987eþ 1 1:2992eþ 1 2:3830e� 2 �3:6864e� 2

�3:1495e� 2 2:3830e� 2 �1:6347e� 3 �1:7168e� 3

4:1427e� 2 �3:6864e� 2 �1:7168e� 3 �1:7614e� 3

2
6664

3
7775
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system matrix A(y) is described by

AðyÞ ¼ A0 þ y1A1 þ y2A2, (22)

where

A0 ¼

0 0 1 0

0 0 0 1

�
k1 þ k2

m1

k2

m1
�

c1 þ c2

m1

c2

m1

k2

m2
�

k2

m2

c2

m2
�

c2

m2

2
66666664

3
77777775
; A1 ¼

0 0 0 0

0 0 0 0

�
k1

m1
0 0 0

0 0 0 0

2
66664

3
77775; A2 ¼

0 0 0 0

0 0 0 0

�
k2

m1

k2

m1
0 0

k2

m2
�

k2

m2
0 0

2
66666664

3
77777775
.
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Simulation results for the case with parameter uncertainties of jy1jp0:5 and jy2jp0:5 are presented under
the initial condition of x0 ¼ ½ 0 0 �0:5 1:5 �T. The controller design parameter Ma ¼ maI with ma ¼ 1e� 4
is chosen. The obtained values of P0, P1 and P2 are shown in Table 1 with tmin ¼ �4:0911e� 4. And
additional subsidiary setting parameters for each control input are let as Ma1 ¼ a1Ma with a1 ¼ 0:6 and
Ma2 ¼ a2Ma with a2 ¼ 0:4. The computed maximum values of d1 and d2 are d1 max ¼ 9:80e� 2 and
d2 max ¼ 9:09e� 2. The robust saturation controller with d1 ¼ d1 max and d2 ¼ d2 max was used in numerical
simulations.

Fig. 2 shows displacements and control input forces for nominal system applying the multi-input robust
saturation controller. The control performance is considerably effective. The multi-input robust saturation
Fig. 2. Displacements and control input forces for nominal system applying the multi-input robust saturation controller

(- – -, No control; —, Controlled). (a) displacements, (b) control input forces.
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controller (9) guarantees robust stability analytically within all the range of parameter uncertainties
considered in controller design. Its robust stability can be also checked through numerical simulations. Among
various cases, Figs. 3 and 4 show the results for the uncertain system with y1 ¼ y2 ¼ 0:5 and for the uncertain
system with y1 ¼ y2 ¼ �0:5 applying the multi-input robust saturation controller, respectively. Simulation
results show that the multi-input robust saturation controller is robustly stable with respect to parameter
uncertainties over the prescribed lower and upper bounds and can be effectively applied to the uncertain LTI
systems with multi-input.
Fig. 3. Displacements and control input forces for uncertain system with y1 ¼ y2 ¼ 0:5 applying the multi-input robust saturation

controller (– –, No control; —, Controlled). (a) displacements, (b) control input forces.
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Fig. 4. Displacements and control input forces for uncertain system with y1 ¼ y2 ¼ �0:5 applying the multi-input robust saturation

controller (– –, No control; —, Controlled). (a) displacements, (b) control input forces.

C.-W. Lim / Journal of Sound and Vibration 300 (2007) 1079–10871086
4. Conclusions

In this paper, a multi-input robust saturation controller for uncertain LTI systems was proposed. The
controller was designed by introducing additional subsidiary setting parameters Maj (j ¼ 1; 2; . . . ; r), which are
not necessary in the single input case, for each control input. It was shown through numerical simulations that
the multi-input robust saturation controller is effectively applicable to the multi-input uncertain LTI systems
involving both control inputs’ saturation and structured real parameter uncertainties.
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